接下来为大家讲解大数据特性,以及大数据特性中多样化的来源多体现在哪些方面涉及的相关信息,愿对你有所帮助。
简略信息一览:
大数据具有哪些特征
1、大数据从整体上看分为四个特点,第一,大量。衡量单位PB级别,存储内容多。第二,高速。大数据需要在获取速度和分析速度上要及时迅速。保证在短时间内更多的人接收到信息。第三,多样。数据的来源是各种渠道上获取的,有文本数据,图片数据,***数据等。因此数据是多种多样的。第四,价值。
2、大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
3、数据之间关联性强,频繁交互,如游客在旅游途中上传的照片和日志,就与游客的位置、行程等信息有很强的关联性。高速性 这是大数据区分于传统数据挖掘最显著的特征。大数据与海量数据的重要区别在两方面:一方面,大数据的数据规模更大;另一方面,大数据对处理数据的响应速度有更严格的要求。
4、更快的处理速度 大数据的处理所遵循的定律是一秒定律,能够在不同类型的数据当中将更具有价值的信息,有效的进行获得。真实性 大数据的重要性,就在于是否能够有效的对决策进行支持,而大数据的真实性,是获得有效思路和正确内容的因素之一,也是决策得以成功进行制定的基础。
5、种类(Variety):数据类型的多样性;速度(Velocity):指获得数据的速度;可变性(Variability):妨碍了处理和有效地管理数据的过程。真实性(Veracity):数据的质量。复杂性(Complexity):数据量巨大,来源多渠道。价值(value):合理运用大数据,以低成本创造高价值。
简述大数据的特征
1、数据之间关联性强,频繁交互,如游客在旅游途中上传的照片和日志,就与游客的位置、行程等信息有很强的关联性。高速性 这是大数据区分于传统数据挖掘最显著的特征。大数据与海量数据的重要区别在两方面:一方面,大数据的数据规模更大;另一方面,大数据对处理数据的响应速度有更严格的要求。
2、大数据的特征可总结为五个V,即规模性(Volume),高速性(Velocity),多样性(Variety),真实性(Varacity),价值性(Value)。 大数据从数据来源、处理方式、数据思维等方面都带来了革命性的变化,颠覆了传统的数据管理方式。(1)数据规模。
3、第一个特征是数据量大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)类型繁多(Variety)第二个特征是数据类型繁多。包括网络日志、音频、***、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。价值密度低(Value)第三个特征是数据价值密度相对较低。
4、大数据特征 数据类型繁多:对数据的处理能力提出了更高的要求,例如网络日志、音频、***、图片、地理位置信息等等多类型的数据。处理速度快和时效性要求高:是区分于传统的数据挖掘,也这是大数据最显著的特征。
5、容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息;种类(Variety):数据类型的多样性;速度(Velocity):指获得数据的速度;可变性(Variability):妨碍了处理和有效地管理数据的过程。真实性(Veracity):数据的质量。复杂性(Complexity):数据量巨大,来源多渠道。
6、大数据的特征有异构性、交互性、时效性、社会性、突发性、高燥性等等。异构性 描述同一主题的数据由不同的用户、不同的网站产生。网络数据有多种不同的呈现形式,如音***、图片、文本等,导致网络数据格式上的异构性。
大数据的特性包括
本题考查大数据。大数据的特性包括:数据量大、数据多样性、价值密度低、数据的产生和处理速度快。
数据之间关联性强,频繁交互,如游客在旅游途中上传的照片和日志,就与游客的位置、行程等信息有很强的关联性。高速性 这是大数据区分于传统数据挖掘最显著的特征。大数据与海量数据的重要区别在两方面:一方面,大数据的数据规模更大;另一方面,大数据对处理数据的响应速度有更严格的要求。
大数据的特性包括大量化、多样性、快速化、价值密度低。大量化 指数据的数量巨大。日新月异的信息存储技术使得存储大量数据的成本越来越低,特别是分布式存储技术的日益成熟,逐渐使得存储 PB、EB 甚至 ZB 级别的数据成为可能。多样性 指数据的种类繁多。
关于大数据特性,以及大数据特性中多样化的来源多体现在哪些方面的相关信息分享结束,感谢你的耐心阅读,希望对你有所帮助。