接下来为大家讲解大数据处理,以及大数据处理的常见技术涉及的相关信息,愿对你有所帮助。
简略信息一览:
什么是大数据?大数据有哪些处理方式?
在《大数据时代》一书中,维克托·迈尔-舍恩伯格和肯尼斯·库克耶将大数据定义为不需要依赖随机抽样分析的捷径,而是对所有可用数据进行综合分析的方法。
大数据具有四个主要特点,即“四V”特点,分别是体量大(Volume)、速度快(Velocity)、多样性(Variety)和价值密度高(Value)。大数据的“体量大”是指数据的规模巨大,远远超过传统数据处理系统的承受能力。这包括来自各种来源的海量数据,如社交媒体、传感器、日志文件等。
在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
大数据是一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据***,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。
不同点:大数据安全与传统安全的主要区别体现在数据的规模、处理方式和安全威胁等方面。 数据规模:在大数据时代,数据的规模远远超过了传统数据。大数据通常涉及数百TB甚至PB级别的数据,而传统数据通常只有GB或MB级别。
互联网周刊的定义为:大数据的概念远不止大量的数据(TB)和处理大量数据的技术,或者所谓的4个V之类的简单概念,而是涵盖了人们在大规模数据的基础上可以做的事情,而这些事情在小规模数据的基础上是无法实现的。
关于大数据处理和大数据处理的常见技术的介绍到此就结束了,感谢你花时间阅读本站内容,更多关于大数据处理的常见技术、大数据处理的信息别忘了在本站搜索。